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Introduction 
Dr. Marcus is a mechanical engineer who, for three years, has been teaching a 

regular graduate level seminar on ecologically-minded structural design.  Each 

semester, about a dozen graduate students take his course. They tend to do most of the 

readings, they attend most of his classes, and they perform fairly well on his tests. He’s 

usually disappointed with the sophistication of the in-class discussions, but some 

semesters it’s quite good. He requires each student to generate an original independent 

project, and he’s surprised by the variety of ideas.  Some students design something to 

improve the efficiency of a specific structure or process. Some write a literature review 

on some topic. Most of them choose projects directly related to their own work outside 

the class. 

This teaching is satisfying, but Dr. Marcus wants the class to be better.  He wonders 

whether the course is improving his students’ skills.  And if not, he wonders what 

changes he should make to the class.  Should it be bigger or smaller?  More lecture-

focused or more discussion-focused?  Should students be encouraged to do different 

types of projects?  He knows he could conduct some educational research to answer 

these questions, but isn’t sure how to proceed. He has some intuitions and even some 

strong opinions about how to improve the class, but he’s empirically-minded enough to 

doubt the validity of even seemingly obvious solutions. 

He meets with the mechanical engineering program director, Dr. Schneider, who is 

also planning a large scale evaluation of the departmental curriculum. She’s concerned 

about a recent surge of complaints from students that they have too many required 

classes and not enough exposure to practical, applied solutions to real situations. She’s 

aware of some other programs that have adopted a project-based learning curriculum, 

but isn’t certain whether that kind of curriculum change would be worth the effort and 

cost. 

Their interests are more than institutional. Dr. Marcus wants to improve his class, but 

he really wants to know why those improvements work, because without understanding 

the mechanisms that cause those improvements, further improvements will be just as 
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difficult. Dr. Schneider, similarly, wants to generate some statistics that distinguish her 

program from her competitors’, but she also wants to make sure that those statistics 

represent important and true aspects of her department. She wants to adjust her 

curriculum, not for political or financial reasons, but for educational ones. In short, they 

are both empiricists, and know that true understanding cannot be achieved without 

experimentation. Together, they decide to plan a research program that addresses their 

institutional needs, improves their pedagogy, and contributes valid and useful 

knowledge to the engineering education literature. 

Every strong research program requires rigorous testing of hypotheses generated 

from research questions in order to build useful causal models, and ultimately, scientific 

theories. No single study, no matter how carefully done, will generate a definitive answer 

to a research question. Only a large number of studies, using a variety of methods, 

addressing the same questions in different ways can falsify or support a theory. Drs. 

Marcus and Schneider must first conduct exploratory research to identify the causal 

models they want to test, develop a set of hypotheses crucial to those models, conduct 

experiments to test those hypotheses, and finally publish their results in peer-reviewed 

journals to disseminate their findings. 

 

This document is designed to help education researchers plan similar research 

programs. Sections are organized by the chronology for developing a series of studies. 

First, we will discuss how exploratory research can suggest theories and causal models, 

but cannot test them. Second, we will describe testable research hypotheses and how to 

conduct adequately-powered, appropriately designed experiments. Third, we will 

discuss the treatment of data and how to choose the most appropriate statistical tests. 

Fourth, we will discuss how to interpret results and prepare them for publication. 

There are few correct answers in research design and analysis: many methods can 

be used to address the same problem. Methodologists disagree, sometimes 

vehemently, about the appropriate use and interpretation of certain designs and 

statistics. The process of data analysis and the conventions for reporting results are 

constantly changing as scientists and editors adjust to new methodologies and fields of 
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study. However, the basic premises of the scientific method are constant. Throughout 

the document, several of these points are highlighted as cardinal rules. The cardinal 

rules in this document describe widely-agreed upon truths of research, some of which 

are commonly misunderstood by novice researchers. 

Our focus is on quantitative research design, so qualitative methods and analysis will 

not be described. Measurement, the art of translating real world concepts into 

observable quantities, is an enormous field, too complicated to be treated thoroughly in 

this document. We will address some aspects of measurement important to research 

design, but will leave much of the theory of measurement and operationalization to other 

authors. 

This document is intended to be a guide to help a researcher plan, implement, and 

report empirical studies that are informative and useful to a broader scientific audience. 

We assume the reader has some familiarity with statistics and some experience using a 

statistical software package or two, but we use no math in our descriptions. A wide 

variety of complex and obscure methodological and statistical methods is available to 

researchers, but the concepts described in this document are common, widely accepted, 

and used consistently in the social science research literature. 

Exploratory Studies and the Development of 
Theories 
Exploratory Research 

Dr. Schneider is unsure about what sorts of experiments or studies she should 

conduct to understand and improve her program. Would a problem-based curriculum 

lead to more or less student satisfaction?  To more or less efficient use of faculty time?  

Would students become better thinkers or planners?  What aspects of the program are 

important to measure?  What faculty, student, administrative behaviors indicate what 

they are really thinking?  How should she measure the effects of her curricular reform? 

In short, she is not being guided by any theory. A scientific theory is a broad 

understanding of how a real-world system works. A theory defines constructs and the 

ways in which those constructs interact.  Imagine trying to study the physical sciences 
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without an atomic theory stating that matter is comprised of tiny particles, of which there 

are only a few dozen types.  Would you focus on the properties of growing things versus 

inert things?  Red things versus green things?  Big things versus small?  There are an 

infinite number of possible studies and experiments which would yield little or no 

information about the true nature of matter.  The theory provides a set of constraints 

within which to think and a set of predictions that can be verified or falsified.  The atomic 

theory did not arise in its entirety all at once, but was a philosophical stance for 

thousands of years before taking its modern form over the past couple centuries. 

Since Dr. Schneider has no working theory about what causes her students to learn 

or not learn as they do, she decides to start her research program with an exploratory 

study.  Later, she will use the results she obtains to form causal models, which will allow 

her to make predictions she can test with focused experiments.  Only then, by 

repeatedly improving her ability to predict learning outcomes by using these causal 

models, will she begin to have a scientific theory of learning.  But the first step must 

always be careful observation of the phenomena to be explained: an exploratory study. 

The point of an exploratory study is to cast a wide net over a poorly understood 

problem and catch as many possible relationships between aspects of that problem. It’s 

important to remember, however, that a net will always catch things you don’t want 

along with the things you do. When Dr. Schneider and Dr. Marcus meet to list all the 

aspects of the program that they suspect may be affected by Dr. Marcus’ course, they 

decide to start giving questionnaires to his students to measure their attitudes about 

environmentalism, learning styles, and Dr. Marcus’ teaching. They want to know the 

students’ plans for specialization within engineering, their expectations for career 

success, their self-perceived achievement, and personal commitment to 

environmentally-responsible design. They plan to collect the students’ admissions data: 

undergraduate grade point averages both in general and for science-related courses, 

interview scores, graduate record examination scores. They plan to track these 

students’ academic performance through the class, the program, and ultimately their job 

placement when they leave. 
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Some of these measures are existing data: undergraduate grade point averages are 

numbers that have already been computed, have meanings that are already well-

understood, and are organized in a database kept by the admissions department.  Most 

of these measures, however, are not yet usable. Some require a little research: 

students’ learning styles is an area of education research with a long history, and many 

measures have been published, critiqued, and revised. Still others have yet to be built: 

students’ personal commitment to environmentally-responsible design is probably too 

specialized a concept to have been measured before. The researchers may have to 

develop a questionnaire to measure that construct. 

Before collecting any data, they will need to obtain permission to conduct the study 

from their Institutional Review Board (IRB). IRBs exist to protect the rights of human 

participants as subjects in scientific studies. Most academic institutions have at least 

one IRB1 and every IRB can act somewhat independently from others. Since most 

exploratory studies do not involve manipulation or deception, IRBs tend to approve them 

quickly. Moreover, since most of this data collection is part of the normal educational 

process, IRBs will generally grant an educational exemption—a less restrictive set of 

responsibilities for the researchers. In any case, the researchers should identify and 

communicate with the IRB responsible for research within their department before 

collecting any data or performing any analyses. 

Once the measures have been identified and a feasible, IRB-approved plan for 

collecting the data is written, the researchers need to decide how many students will be 

adequate for their purpose. This is a common question among inexperienced 

researchers and will be treated in greater detail in the Hypothesis Testing section below. 

In exploratory studies, the goal is simply to gather as much information as practical.  Our 

first cardinal rule applies to exploratory studies: 

Cardinal rule # 1: Exploratory studies can suggest, but cannot test theories.  

                                                           
 

6 



Let’s assume the researchers have collected their data and have computed a full 

correlation matrix, measuring how strongly each of their measures is related to each of 

the others.  Studying this matrix, they may find that students’ class participation 

correlates highly with self-perceived achievement.  They may also find that rigorous 

study habits correlate highly with higher test scores.   But they may be surprised to find 

that  these two correlations are independent—that is, that neither class participation nor 

self-perceived achievement correlates with rigorous study habits and higher test scores. 

They would reasonably conclude that students have a quality they could call 

“confidence” which leads to class participation and self-perceived achievement, but that 

this “confidence” does not cause academic discipline or aptitude.  

However, because this conclusion was created to explain unexpected results from an 

exploratory study, it must be tentative.  The researchers cannot know whether this 

correlation pattern would happen again with a different set of students. In other words, 

these correlations may be accidental or they may reflect some underlying truth, but an 

exploratory study can never distinguish between these possibilities. 

In order to be reasonably sure that student “confidence” is a real quality and that it 

does not actually cause studying or actual achievement, the researchers need to look 

for these patterns again in another group of students.  If this second study finds similar 

correlations, it can be taken as evidence for the hypothesis.  Similarly, if the second 

study does not find similar correlations, it can (assuming it has enough power) be taken 

as evidence against the hypothesis.  That second study is an attempt to replicate a 

specific correlation. Replication includes an element of prediction and prediction is the 

basis of all scientific theories. A theory that makes no predictions is not empirically 

falsifiable and is therefore not scientific. A theory that makes consistently wrong 

predictions is an incorrect theory and must be revised or discarded. 

Despite their inability to test hypotheses, exploratory studies are powerful and useful 

methods for developing theories and causal models and for defining hypotheses when 

the number of relationships between measures is very large.  It is important to learn to 

find useful hypotheses. Different theories may be able to explain the same patterns of 

data, but there will always be a circumstance for which the theories make different 

7 



predictions.  These differing predictions are testable hypotheses: the opposing theorists 

can agree that whoever’s prediction comes true has the better theory. 

For instance, Dr. Marcus may suspect that student aptitude is a stable trait that 

predicts students’ ultimate job placement success; some students have it, and some 

don’t. Dr. Schneider may have a different theory, believing that all their students have 

enormous potential but have different learning styles.  She may believe that the system 

is biased towards visual learners, so verbal learners test poorly and fail to find jobs, but 

they would have learned more and gotten better jobs if the program had addressed their 

learning needs.  

When the data from their exploratory arrives and they find that students who perform 

well on their undergraduate calculus tests tend to earn high post-degree salaries, their 

conclusions will differ. Dr. Marcus will say that those students are simply smarter and 

more studious, while Dr. Schneider will say that non-mathematical aptitudes such as 

environmental awareness are undervalued by their program and their field as a whole.  

Thus, when discussing admissions policy, Dr. Marcus will propose admitting only 

students with superior calculus scores. Dr. Schneider would disagree vehemently. The 

observed correlations cannot say who is right. 

A useful hypothesis would address the differences between their underlying theories.  

Do verbal learners have equivalent aptitude as visual learners, when aptitude is defined 

with less bias toward mere technical skill?  Would grading students based on their 

sensitivity to environmental and social issues reduce the correlation of undergraduate 

calculus scores with post-graduate earnings?  Dr. Schneider’s theory predicts “yes,” 

whereas Dr. Marcus’ theory predicts “no.”  These research questions raise differing 

hypotheses, which can be empirically tested. 

The problem in exploratory studies is that people are very good at explaining 

observed results after the fact (post hoc). It is always tempting to react to the results of 

an exploratory study as if those results were obvious and inevitable. It is important to 

remember all the possible correlations that did not occur in the data and the likelihood 

that the observed correlations were entirely accidental. Changing your theory to 

incorporate a finding that was simply a chance occurrence is an error.  It is such a 
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troublesome and common error that researchers call it a Type I error: Type I error is the 

conclusion that an effect exists when in fact it does not. 

Cardinal rule #2: Regard your results with skepticism.  Type I error results 

from excess credulity. 

People are prone to erroneous beliefs.  A gambler who wears his new hat to the 

casino and wins a lot of money may decide the hat is lucky.  He will start wearing the hat 

more.  He will attribute wins to the hat and attribute his losses to other causes.  What he 

will probably not do is a planned experiment: flip a coin each day to determine whether 

or not he will wear his hat and track his winnings across a few months.  He is not 

skeptical enough of his own beliefs to bother with that.  Planned experiments require 

discipline, patience, and resources.  Data from planned experiments is valuable.  

Observation of things as they naturally happen is much easier and observational data is 

cheap.  We are surrounded by observational data. 

Unfortunately, a planned experiment is not always possible, practical, or ethical. If 

you hypothesize that men and women are predisposed to different learning styles, you 

will have to do an observational study because you can’t randomly assign genders to 

your subjects.  If you hypothesize that a complete reorganization of your curriculum 

would improve student performance dramatically, you will have to implement that 

curriculum for at least some of your students and allow those students to choose 

whether to switch back to the more conventional curriculum if they want. 

In an experiment, the experimenter wants control.  He wants to manipulate only 

certain things—whether or not the gambler wears the “lucky” hat, or which students 

attend the new curriculum, etc.—and observe the effects.  He wants to be able to claim 

that those effects are due to the things he manipulated and to no other causes.  

Therefore, all other possible causes for those effects need to be as similar as possible 

between the experimental conditions, whether by direct control or by randomization.  

Obtaining this control is what makes experiments expensive. 
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In an observational design, the experimenter relinquishes control. Since the 

experimenter is not directly controlling anything, the distinction between cause and 

effect is blurred and causal assertions cannot be made definitively. This is a crucial 

cardinal rule of research design: 

 Cardinal rule #3 : Correlation does not indicate causation  

If a researcher finds that students who said they used a computer-based learning 

resource tended to score higher than others in the class on a knowledge test, he cannot 

definitively conclude that the computer-based resource is a useful learning tool.  It may 

be the case that only motivated students chose to use the resource; they would have 

gotten the highest test scores anyway. Perhaps performing well on the test caused 

students to overstate how thoroughly they prepared. The co-occurrence of high scores 

and self-reported computer studying is merely a correlation. In order to test the causality 

that the learning tool causes better performance, the researcher would have to assert 

control—assigning some students to a computer-using group and others to a non-

computer-using group. That assignment is manipulation and that study is an experiment.  

In that case, the experimenter will want to make sure that the two groups are as evenly 

matched academically as possible, that they have comparable computer skills, 

comparable ages, comparable gender ratios, etc.  The more evenly matched the two 

groups are on any factor that might influence their test scores, the more strongly the 

experimenter can claim that a difference in the groups’ test scores is due to the 

computer-based resource. 

It is true, however, that if a causal connection exists between two constructs, then 

there should be a correlation between them. Therefore, if the researcher’s measures are 

reliable and valid, his sample size large enough, his sample representative enough, and 

he finds no correlation, there is likely no causation. For this reason, correlational designs 

can be an efficient way of ruling out many causal models. 

When Dr. Schneider and Dr. Marcus have collected their data and started examining 

the various correlations and group differences in that data, they will start to infer some 
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causal models and start to build a theory about how their students learn within their 

curriculum.  This theory will make predictions about other correlations and group 

differences that they can look for in this exploratory dataset.  However, they will have to 

keep in mind that many of the correlations they find are due to chance, and that if they 

were to re-run the entire study, a somewhat different pattern would emerge.  They will 

have to test their theory by experiment, and they certainly will have to revise the theory 

in light of unexpected experimental results.  

Theories generate research hypotheses, which are tested by research. Research 

hypotheses can never be more important than the theories that raise them, and answers 

can never be better than the hypotheses they address. Exploratory research helps 

generate research hypotheses, but only planned studies can test them. Before 

beginning any planned study, it is vital to have clearly defined research hypotheses.  

Below, we outline the nature of theories, causal models, and hypotheses. 

Theories, Causal Models, and Hypotheses 
A scientific theory is a broad understanding of how a real-world system works. The 

theory defines constructs and the rules under which those constructs interact. For 

instance, Newtonian physics proposes that an object has a property called “inertia” and 

its surroundings exert a force on it called “friction.”   Even though these properties are 

ascribed to concrete objects, the properties themselves are ephemeral.  Science is 

agnostic as to whether these constructs actually exist in the world: truth is a 

philosophical, not a scientific, problem.  Psychological constructs such as “mood” or 

“personality” or “motivation” are similarly ephemeral and may not map directly on to any 

concrete object or system—science doesn’t care.  What science cares about is the 

accuracy of predictions the theory can make.  A theory is only a theory if it makes 

predictions that may or may not come true. If a theory’s predictions do not reliably come 

true, scientists will reject the theory by modifying it so it makes better predictions or 

replacing it with a new theory entirely. Every theory, no matter how successful to date, 

will likely prove faulty in the future. A theory can only be improved using continuous 

rigorous testing by skeptical scientists eager, or at least willing, to reject it. 
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Dr. Schneider and Dr. Marcus have invested the time and energy to gather and 

analyze their exploratory data and pored over the results long enough to generate an 

appealing theory.  They will understandably be emotionally and intellectually invested in 

this theory and may find themselves more excited about proving it true than about 

proving it false.  They will be wise to remember our next cardinal rule: 

 Cardinal rule #4: Theories can never be proven true; they can only fail to be 

proven false.  

Useful research programs try to falsify theories. Successful researchers are skeptical 

of their own results and relentlessly seek alternative explanations.  Many obvious and 

attractive statements—the earth is at the center of the solar system, the universe is 

infinitely large, heavy things fall faster than light things, animals pass acquired physical 

traits to their offspring—make predictions which do not come true in the real world.  

Ancient mathematicians worked hard, and fruitlessly, to explain why the visible planets 

change their speed and direction as they move across the night sky, ostensibly in their 

orbit around the Earth. An alternative explanation--that those planets orbit the sun and 

not the Earth--explains the planets’ behavior much more parsimoniously.  Despite the 

non-intuitiveness (and even heresy) of such a model, its superior predictive power is 

undeniable. 

Every theory contains several causal models. For instance, Newtonian physics 

proposes that friction reduces inertia by converting kinetic energy into heat energy.  The 

constructs and causality of this model are important to the understanding of matter: 

something called “friction” causes something called “energy” to change into heat by 

causing a reduction in something called “inertia.”  Without this structure, the model 

cannot provide explanation. A researcher who merely points at the complexity of the 

numerous relationships between the size, color, temperature, roughness, speed, and 

shininess of various objects sliding down various surfaces is not providing explanation.  

Without explanatory power, a model is useless. 
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Figure 1 is a diagram of a simple causal model where two causes (A and B) produce 

some effect. The physics causal model above has a similar structure in which the inertia 

of an object (cause A) and the friction it experiences (cause B) determine the amount of 

heat energy (effect). This model is not comprehensive: other factors determine the 

amount of heat energy as well. This causal model is part of the larger Newtonian 

physics and describes only one particular causal relationship. An experiment to 

demonstrate how friction and inertia cause heat energy will have to control for all other 

possible sources and drains of heat. 

An educational researcher may draw a similar causal model. For instance, he may 

postulate that the social cohesion of a class of students (cause A) and their access to 

study materials (cause B) affect the amount of spontaneous collaborative learning 

(effect). Again, there are certainly other factors determining whether students form study 

groups, but this causal model is an empirically testable assertion. The researcher can 

manipulate the social cohesion of a class by encouraging more inter-student 

communication or asking the class to work as a team on some problem.  The researcher 

can manipulate the students’ access to the study materials.  The causal model makes 

some predictions about how these manipulations should affect spontaneous 

collaborative learning.  Such causal assertions are necessary for coherent theories and 

such predictions are necessary for scientific hypothesis testing. 

 

 

 

Figure 1:  Schematic of a simple causal model in which two causes, measured by 

independent measures, produce an effect, measured by a dependent measure.  
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Constructs (ovals) exert causality (directional arrows) on each other and on the 

measures (boxes) a researcher uses to observe them. 

 

Hypothesis Testing 
Scientists should be deeply skeptical. Anyone asserting a scientific explanation bears 

an enormous burden of proof. No matter how well-designed and well-executed a 

planned study may be, there is always room for doubt. There are always confounds. 

There is always measurement error. There is always the possibility of a fluke result. 

When a researcher submits a research manuscript for publication, peer reviewers will 

always express these doubts and point out these flaws. The scientific community 

aspires to be an extremely tight filter, letting in only the more hardened truths. It is 

important to expect, and even enjoy, tough scrutiny when presenting a research finding 

to peers. 

When a theory’s predictions prove true consistently, that skepticism softens. For each 

individual, the point of acceptance of a theory is a subjective decision, but it is never 

complete. On any given day, any given physicist may find some piece of data which 

casts doubt on the law of gravity. If that result can be replicated to the satisfaction of 

enough other physicists, the theory of gravity as we know it would be discarded and 

rewritten. No scientific theory, no matter how credible, historical, or central to our 

understanding of nature is exempt from this rule: science is the constant endeavor to 

prove itself wrong. 

Once researchers have some hypotheses, they can conduct hypothesis-testing 

studies. As opposed to exploratory studies, hypothesis-testing studies can prove a 

theory’s predictions wrong, thereby disproving the theory itself. This is possible because 

the hypothesis exists before the study is conducted, so the study can be designed to 

falsify it. Good experiments are designed to falsify hypotheses. The failure to find a 

predicted relationship is not falsification: anyone can fail to find something that actually 

exists by looking in the wrong place, or not looking carefully.  If Dr. Schneider believes 
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that students with poorer math skills can achieve superior job placement if the 

curriculum focuses on and rewards non-technical aspects of engineering, she is making 

a prediction that Dr. Marcus’ theory (that the technically-apt students are simply better) 

cannot handle.  If she finds empirical evidence to support her prediction, the power of 

the finding comes less from the support it lends her theory (after all, there may be other 

reasons why she found that effect) but rather more from the blow it deals to Dr. Marcus’ 

theory.  If the hypothesis endures an attempt to falsify it, the researcher may conclude 

that the hypothesis—and by extension, the theory that generated it—is valid (at least to 

some extent). 

Some important caveats apply: 

 Cardinal rule #5 : No single study can prove a hypothesis false.  

Even hypothesis-testing studies require replication for verification. If a causal model is 

true, it should be observable repeatedly.  A researcher repeating the experiment using 

the same methods as the original study (an exact replication) should find the same 

results.  If he does, he can believe that the results of the original study were not merely 

accidental. However, he might still believe in an alternative explanation for those results.  

For this reason, an even stronger replication will use different methods.  If the causal 

model predicts results in a wide range of experimental situations, alternative 

explanations become less likely.  A climatologist may be stunned to observe that the sun 

does not rise every morning.  He may claim that our model of the solar system is wrong.  

However, a skeptical colleague may remind him that his data comes from the South 

Pole and suggest that he try to replicate his findings at the equator.  Similarly, Dr. 

Schneider’s initial adoption of a problem-based curriculum may receive rave reviews 

from faculty in the first year. However, without an attempt to replicate the finding in the 

next year, she cannot know whether the faculty are happy about the new curriculum per 

se, or are merely happy to see some sort of change. If faculty attitudes drop back to 

normal levels in the second year of the new curriculum, the original result will not have 
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replicated. The prediction that faculty prefer the new curriculum will have failed and an 

alternative explanation will have succeeded. 

How to design a hypothesis-testing study 

True experimental designs are the strongest tests of an hypothesis.  The only way to 

prove causality is to: (1) intentionally change something and (2) show that something 

else is affected. This is a true experiment. In a true experimental design, the researcher 

actively manipulates one or more independent variables and measures any changes in 

one or more dependent variables. If the experimenter renders inoperative most other 

possible influences on the dependent measures, the experiment is well-controlled.  In a 

well-controlled experiment, observed differences in the dependent measure can be 

reasonably attributed to the manipulation.   Well-controlled experiments are very difficult 

to conduct, especially in the social sciences where many causal factors are beyond any 

researcher’s control.  Nonetheless, it is important to identify and control as much as 

possible when testing a hypothesis. 

A true experimental design always contains a comparison between different values of 

the independent variables.  The most powerful comparison is between an experimental 

condition and a control condition.  Ideally, the only difference between subjects in the 

experimental and the control conditions is the independent variable.  When Dr. 

Schneider measures the impact of the new curriculum, she compares faculty reaction to 

the new curriculum (the experimental condition) to that of the old curriculum (the control 

condition).  Her choice of control condition is important: if she uses attitude measures 

taken in a year prior to the adoption of the new curriculum, she can only make strong 

claims if that year was the same as the current year in all aspects except the 

curriculum—the same faculty, same political and economic conditions, same student 

aptitude, or anything else that might impact faculty attitudes in general.  If she uses a 

retrospective control condition, viz. asking this year’s faculty to rate both curricula 

simultaneously, she can only make strong claims if faculty can assess accurately their 

prior attitudes.  Again, these ideals are generally impossible in social science research, 

making replication by different methods very important. 
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Well-controlled studies are extremely rare because not everything can be controlled.  

To the extent that a researcher accepts a lack of control, she weakens her case that the 

manipulation is the cause of the observed effect.  Some factors, such as students’ 

gender, intelligence, socio-economic background, and ethnicity, simply cannot be 

manipulated.  Some factors, such as the grades and career advice given to students, 

cannot be manipulated without ethical considerations of interfering with students’ rights 

to an honest, good faith education.  The manipulation of other factors, such as access to 

certain study aids or curricular tools, may be possible and ethical, but only if students 

agree to participation in that manipulation.  It is very important when planning any study, 

particularly one where manipulation is made in the name of hypothesis-testing, to get 

approval from IRB.  Practical and ethical realities supersede scientists’ desire for control: 

the art of designing a good hypothesis-testing study is in grappling with this loss of 

control. 

To improve a hypothesis-testing study design, the researcher must focus on both the 

causes and the effects.  When focusing on the causes, the researcher must choose the 

best independent measures to manipulate, be able to demonstrate the strength and 

success of the manipulation, and identify and control for other factors which might yield 

alternative explanations.  When focusing on the effects, the researcher must choose the 

best dependent measure, be able to demonstrate its validity and reliability, and show 

that enough data has been collected to treat the experimental results as definitive.  

Some advice on these topics is given below. 

Focus on causes 
Choose focused independent measures and manipulate them strongly: If Dr. 

Marcus is interested in improving his lecture style, he has to decide what aspect of that 

style to manipulate.  If his hypothesis is that encouraging student participation during 

lectures will improve their learning, he must decide exactly how to manipulate that 

aspect, how strongly to manipulate it, and how best to make sure the manipulation 

worked.  He may decide that for half his lectures he will ask an open-ended question 

and remain silent for at least 10 minutes to let the students try to generate answers and 

for the other half of his lectures he won’t ask any questions.  This is a very strong 
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manipulation and will probably yield some observable differences in student reaction, if 

not their learning.  But he will still need to make sure that students participate: does the 

class remain silent during those 10 minutes?  If so, the manipulation has probably failed. 

Who speaks?  Perhaps students who don’t speak up should be analyzed separately.  

The independent measure should strongly reflect the cause in the causal model: does 

Dr. Marcus expect each student’s participation level to improve that student’s learning, 

or that any student participation will benefit the whole class? 

Control for confounds in the design, or in the analysis:  Dr. Marcus may not be 

entirely free to choose which lectures to use for experimental or control conditions.  

Some topics may contain too much book-knowledge to lend themselves to open-ended 

questions.  Some topics may contain too little factual content to warrant a purely didactic 

lecture.  It may be that students do better on such non-fact-rich topics anyway.  If there 

are too many non-fact-rich topics in his experimental condition, he would be wrong to 

ascribe higher student learning in the experimental condition to lecture style.  This 

alternative explanation is a confound—it cannot be ruled out using the experimental 

design in question.  To control for the confound, Dr. Marcus has two basic options: (1) 

make sure that topic difficulty is equally represented in the experimental and control 

conditions or (2) use a statistical method to handicap learning scores on easier topics 

when making the comparison between lecture styles. 

The first option is superior if it is practicable.  Dr. Marcus can categorize each lecture 

topic as book-knowledge-heavy or subjective and include an equal number of each in 

each condition.  If he has a large enough set of lectures, he can make sure he randomly 

assigns each lecture to one condition or the other and force himself to apply the 

assigned lecture style to that topic.  The random assignment is important and worthy of 

another cardinal rule: 

Cardinal rule #6: Randomization ensures unbiased results. 

By randomizing assignment of lecture topic to condition, Dr. Marcus is avoiding 

creating a confound like the one above, in which his preference to use a certain lecture 

18 



style for a certain topic confounds topic difficulty with lecture style.  He may flip a coin, 

use a computer program, pull numbers out of a hat, or perform any other non-biased 

assignment method.  Note that the randomization can not ensure that a confound will 

not occur: confounds also happen by accident.  But the randomization will free Dr. 

Marcus of the fear that he has biased the results with his own experiences and 

expectations. 

The second option is less powerful, requires some statistical savoir faire and requires 

some assumptions about the causal model being tested, but when confounds cannot be 

practically resolved, it is the only method.  To use this method, Dr. Marcus can use 

student performance from previous years to estimate the difficulty of each lecture topic, 

giving each topic a numerical difficulty score.  He might assign these scores subjectively 

after reviewing student performance over several years or he may use direct measures, 

such as average student test performance on previous final exam items covering each 

topic.  Now he is free to assign lecture topics to experimental or control condition as 

non-randomly as he prefers.  He can then use a statistical method called Analysis of 

Covariance (ANCOVA) to model student learning by topic difficulty and, separately, by 

lecture style.  The ANCOVA doesn’t resolve the confound—easier lectures topics are 

still overrepresented in the experimental condition—but it gives an indication whether 

student learning on experimental lecture-style topics is better than would be expected by 

the difficulty of those topics alone. 

If Dr. Marcus has to use a lot of this sort of statistical control in the analysis of his 

results, he is not conducting a true experiment, but rather a quasi-experiment.  Quasi-

experiments have some of the weakness of exploratory research—causal assertions are 

tenuous.  Unless Dr. Marcus actively assigns some easy topics to the didactic lecture 

style condition, he cannot definitively ascribe better student performance on those topics 

to his lecture style.  ANCOVA can provide evidence, but it cannot replace experimental 

control.  This rule is true in general: 

Cardinal rule #7: The better the experimental design, the simpler the 

statistical analysis and the stronger the causal assertion. 
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While statistical methods—ANCOVA, multiple regression, hierarchical linear 

modeling—allow the researcher to control for confounds during analysis, they cannot 

substitute for an experiment which controls them in the experimental design.  Quasi-

experiments are necessary when independent measures cannot be controlled for 

practical or ethical reasons, but should be avoided when possible. 

Keep planned tests for interactions focused and simple:  It common to include 

several independent measures in an experiment.  Reality is complicated and single-

cause models are not nearly as predictive (nor interesting) as multiple-cause models.  

Dr. Marcus may wonder if the males and females in his class react differently to the 

lecture style change.  He may wonder if encouraging student participation would 

decrease learning for some topics and increase it for others.  These questions raise 

hypotheses that can only be tested by manipulating or observing multiple independent 

measures: lecture style, topic, student gender. 

If students in general learn more in student-participation lectures no matter their 

gender or the topic in question, that effect will show up as a main effect of lecture style.  

A main effect is the direct cause of one independent measure on the dependent 

measure.  Main effects are easy to test, easy to graph, easy to explain, and easy to 

understand. Interactions occur when the effect of one cause is mediated by another.  If 

females learn more on student-participation lectures and males learn more on didactic 

lectures, this pattern will show up as a two-way interaction between lecture style and 

gender.   

Interactions can mask main effects.  Figure 2 is a graph of a hypothetical two-way 

interaction between the amount of reading assigned to a student and that student’s year 

in the program.  In this interaction, more reading increases first year students’ attitudes 

and decreases fourth year students’ attitudes.  If the researcher hadn’t thought about 

considering the students’ years, he would simply calculate the average of student 

attitudes with few assigned readings and with many assigned readings.  As the dashed 

line in Figure 2 shows, he would find no main effect.  If he happened to have only a few 

fourth year students in a large class of first years, he would likely find a positive main 
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effect.  He might notice that the students who have worse attitudes with more assigned 

readings tend to be older and he might postulate the hypothesis of the interaction.  

It is possible to find three-, four-, five-way interactions.  Each independent measure a 

researcher adds to the experimental design can interact with each of the others and with 

each of the others’ interactions.  For instance, the interaction shown in Figure 2 might 

only be true of males while females’ attitudes are not influenced by the amount of 

reading, no matter their year.  That would be a three-way interaction between amount of 

reading, student year, and student gender.  This three-way interaction might be true for 

mechanical engineers, but the gender effect might be the reverse for electrical 

engineers: a four-way interaction.  These higher-level interactions are not only difficult to 

graph and describe, they are difficult to explain parsimoniously.  When a researcher 

finds three-way or higher interactions, he should try to find different ways to explain the 

effect.  Given the four-way interaction described above, he might ask himself: what do 

male mechanical engineers and female electrical engineers have in common such that 

they might react to reading assignments the same way?  He should consider the 

question in general and for the specific students in the analysis in question.  An 

alternative explanation could reduce the complexity greatly: perhaps students like to be 

assigned readings for topics they find confusing and hate to be assigned readings for 

topics they grasp intuitively.  This hypothesis is testable using a main effect, or at most a 

two-way interaction, and further experiments can test for it.  If it proves predictive of 

student attitudes, it is more useful than a model using the four-way interaction.  
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Figure 2:  An interaction effect on student attitude between student year (1st year and 

4th year) and the amount of required reading per week. The interaction effect exists 

despite the lack of main effects  

 

 

Use the appropriate type of independent measure:  There are three types of 

measures: continuous, ordinal, and categorical. Continuous measures are numerical 

and scalar, measuring an amount or degree of some concept. Height in inches, I. Q. 

score, and income are continuous measures and any individual at any given time has a 

measurable quantity on each of these scales. Ordinal measures are ordered, perhaps 

even numerical, but not scalar. Body mass index category (underweight, normal weight, 

overweight, obese), highest academic degree earned, and tax bracket are ordinal 

measures. These measures represent similar concepts to the continuous measures 

listed above, but the ordinal measures group individuals into classes, while the 

continuous measures do not. Categorical measures are neither ordered nor scalar. 

22 



Personality type, country of birth, and profession are categorical measures. Like ordinal 

measures, categorical measures group individuals into classes, but no internally 

consistent ordering of the classes is possible 

Some factors can only be measured or manipulated by categorical measures.  

Gender, specialty, in- or out-of-state status, pass or failure of a particular class: each of 

these is inherently categorical.  Many causal factors could be considered continuous or 

categorical, however, and the researcher needs to take care to use the most appropriate 

manipulation.  Dr. Marcus has conceptualized lecture style as categorical: either 

didactic-only or using student-participation.  He might consider treating the 

encouragement of student participation as a continuous measure and manipulating the 

amount of time he devotes to student-participation exercises, or the strength of 

conviction he uses to encourage participation and testing the impact of many quantities. 

Decisions to use continuous, ordinal, or categorical measures determine the types of 

statistics which may be used for analysis and therefore the types of conclusions which 

may be drawn from the results of those analyses. 

 

Focus on effects 
Choose an accurate and meaningful dependent measure:  All inferential statistics 

require at least one dependent measure.  That measure is a number that represents the 

construct affected by the manipulation.  Dr. Marcus is hypothesizing that his lecture style 

impacts student learning, so his dependent measure must be some number that 

indicates how much a student has learned.  He may use the percentage of final 

examination questions testing a particular topic that the student answers correctly.  He 

may ask his teaching assistants to rate how much learning each student has 

demonstrated in each topic area.  He may ask his students to rate how much they have 

learned in each topic area.  Each of these measures is an attempt to measure student 

learning, but each carries a different shade of meaning. 

Dr. Marcus has two concerns: (1) the dependent measure must be valid—it must 

represent how much the student has learned about a given topic– and (2) the dependent 
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measure must be reliable—if taken again, or in a different context, it would yield the 

same answer.  In choosing a dependent measure, he assumes the construct of 

“learning” is some measurable thing (allowing a valid measure) that is fairly stable over 

time (allowing a reliable measure), both of which are major assumptions.  There are 

several ways to estimate the validity and reliability of any given measure, which are 

beyond the scope of this document.  Ultimately, Dr. Marcus’ conclusions about the 

impact of his lecture style on student learning will rest on how well his dependent 

measure represents student learning. So, he should spend time convincing himself and 

the readers of his research results that his dependent measure is both valid and reliable. 

No measure is entirely valid nor reliable.  Even a construct like a person’s height, 

which we can be intuitively sure is some actual, observable quantity, can never be 

measured perfectly.  The person in question may slouch, or stand at an angle, or tilt his 

head.  The measurer may start or end at slightly different places of his feet or head.  The 

measuring tape or stick may expand or contract due to the temperature or humidity.  

Height itself is somewhat unstable, as individuals are slightly shorter in the evening after 

standing all day.  As such, even when the construct in question is a tangible, physical 

property, several measures of that construct will yield different answers.  The tendency 

of those measures to be approximately the same gives us an idea of the correct answer.  

The tendency of those measures to differ from each other gives us an idea of how much 

noise is in the measure. 

If Dr. Marcus conducts his experiment using only two or three students, in only two or 

three lectures, he can have no idea whether the differences between them are due to 

the effectiveness of his experimental manipulation or due to the myriad possible 

irrelevant things that influence his dependent measure.  Even if he has managed to 

remove every possible confound which might allow an alternative explanation for his 

results, he’ll never be free of these random differences.  Statisticians call differences 

“error” and all inferential statistics are ratios of observed differences to estimates of how 

much error is in the measures: this ratio is the effect size. If Dr. Marcus finds a 

dependent measure that is highly reliable, his measures will have little error and he’ll be 
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able to find even small differences between his conditions. If he must use a low-

reliability measure, he will be less sure that the differences he finds are not due to error. 

Have adequate power:  One of the most common questions a novice researcher 

asks is “how many subjects do I need?”  A power analysis will answer this question.  

Power is a statistical term and is discussed below. Adequate power requires a certain 

number of subjects. After conducting a power analysis, you may find that you need more 

subjects than you could possibly run in a controlled experiment and should instead use 

a quasi-experimental or correlational design for which lots of data are more easily 

collected. Or, you may find that only a single classroom of students are necessary for 

adequate power, in which case a controlled experiment is entirely practical. 

Power is a probability, ranging between zero and one.  It is expressed as the opposite 

probability of the Greek letter beta, written (1-β).  It’s the probability of an experiment 

finding a particular effect size using a particular number of subjects.  One measure of 

effect size is Cohen’s d (the difference of two means, divided by the standard deviation 

of the sample). If the effect doesn’t exist (d = 0), no number of subjects will manage to 

find it: (1-β) = 0. If the effect is huge (d = 4 or d = -4), it will be almost certainly be 

evident after observing a handful of subjects: (1-β)  > .99.  Therefore, in order to know 

how many subjects you’ll need, you have to know how large the effect you’re expecting 

will be.  Since the experiment you’re planning is (hopefully) asking a question no one 

has answered before, you’ll have to guess how big that effect will be, and so your 

estimate of the number of subjects you’ll need will be based on this guess. However, a 

review of the literature for similar past research can help justify that guess. 

25 



 

Figure 3:  The minimum number of subjects needed for .80 power to detect an effect 

gets lower as the size of the effect gets larger. Detecting small effects is generally 

unfeasible for small-scale studies.  

Typically, an experiment with (1-β) =.80 has adequate power.  Since this means the 

experiment only has an 80% chance of finding the specified effect size statistically 

significant, a researcher may want more power than that.  Figure 3. shows how many 

subjects are needed to detect a single effect with (1-β) =.80 power.  Cohen (19XX) 

described effect sizes typically seen in social sciences and defined the commonly used 

categories of small, medium, and large effect sizes.  A small effect (d=.20) is very hard 

to detect: hundreds of participants are necessary to achieve adequate power. Medium 

(d=.50) and large (d=.80) effects are much more detectable, requiring no more than one 

moderately-sized class of students. Figure 3 is useful, but is a rough guide: the actual 

power will vary depending on the number of other effects being tested.  Most statistical 

software packages can help determine the actual power of specific experimental 

designs. 
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 Power analysis can also determine the smallest effect size that could be detected 

with (1-β) = .80 given a set sample size. This is a very common analysis when your data 

have already been collected or you already know the biggest sample size you can get 

(e.g., the size of your class). By telling you how large of an effect you would be able to 

characterize as statistically significant (i.e., not attributable to random variation), you are 

given information that may tell you whether your study or situation is adequate to give 

you confidence in answering your research question or hypothesis.  Assume Dr. Marcus 

conducts his experiment and finds that students score better on topics taught using the 

open-ended question style, but that the effect is not statistically significant with a p = .06 

(greater than α = .05).  He may conduct a power analysis after the fact and discover that 

if the effect size he’s observed is true, 10 additional students would raise his 

experiment’s power to .80.  Next semester, he can raise his class limit by 10 students 

and re-run the experiment on the whole class to try to replicate the effect and achieve 

statistical significance. 

Use within-subjects designs where appropriate:  The reason we need many 

subjects to demonstrate any effect is because of the large amount of variety among 

people.  A general statement such as “students learn better from lectures involving 

class-participation” cannot be true for everyone: certainly there are some learners for 

whom class participation has no effect, or even hurts.  But the statement doesn’t need to 

be true for all students in order to be broadly true.  The statement “men are taller than 

women” is not true for every possible case.  A random sample of subjects drawn from a 

women’s basketball team and a men’s racehorse jockey club will no doubt show the 

opposite effect.  But the statement is true in general and is crucial knowledge for 

clothing designers and bicycle manufacturers, for example. 

Similarly, individual differences constitute noise when trying to make general 

statements in social sciences.  This stance may seem callous: how can an educator 

dismiss differences between students as “noise” or “error” when his job is to understand 

and adapt to such differences?  This is a major point of criticism for researchers and 

theorists who prefer qualitative methods to the quantitative methods described in this 

document.  These criticisms are well-taken and it may prove impossible to generate a 
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general, predictive educational theory—certainly such success has so far been 

elusive—but it may also prove possible.  We will not know until we have either 

succeeded or given up.  As Lady Macbeth mourned, “the attempt and not the deed 

confounds us.” 

A useful way of controlling for individual variation when estimating the differences 

between conditions is to use the same individuals.  This design is called a “within-

subjects” or “repeated-measures” design.  Dr. Marcus’ experiment is a within-subjects 

design since the same students will be tested in both lecture style conditions.  The most 

powerful statistic he can compute in this design is a paired t-test.  To compute this he 

will calculate each student’s amount of learning (by whatever dependent measure he 

has decided on) for class-participation topics and for purely didactic topics.  Each 

student will show some difference, since the odds of everyone getting the same score in 

both conditions by chance alone are very small.  The paired t-test compares the average 

of these differences to zero and the result indicates how sure Dr. Marcus should be that 

students are learning more in one condition than the other. 

Dr. Marcus might wonder whether the impact of student participation lectures would 

only work if the entire course was taught that way.  In that case, he would have to use a 

between-subjects design.  It might be possible to make the same students take the 

course twice—once with didactic-only lectures and once with student-participation 

lectures, then compare overall learning using the paired t-test described above.  But (1) 

students’ time is better spent taking courses they haven’t yet had and (2) some students 

would have to take the didactic-only course first and others take the student participation 

course first to control for the possible confound of repetition.  While the within-subjects 

design may be preferable, it may not be practical.  In a between-subjects design, one 

set of students take the course when taught in didactic-only style and another set of 

students take the course when taught in student-participation style.  So, the differences 

between the particular students in each class add more statistical error, which reduces 

power. 

Use continuous dependent measures when possible:  In general, continuous 

dependent measures make better dependent measures for they allow parametric 
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statistics. Ordinal and categorical dependent measures can only be analyzed by non-

parametric statistics.  Parametric statistics are very powerful, for they include differences 

between observations within an experimental condition into the estimate of the strength 

of the differences between experimental conditions. Non-parametric statistics cannot do 

that. For instance, if a researcher is curious about whether the use of an in-class 

audience response system improves student performance, he may decide to compare 

student class scores from a previous year (when the system was not used) to a current 

year (when it was). Assume, unbeknownst to the researcher, the audience response 

system only helps good students to perform better and has no effect on poorer students. 

If his class scores are continuous, say a percentage of test questions answered 

correctly, he may use a parametric statistic—an independent samples t-test—and find 

that overall scores did indeed rise, since students who would have achieved around 

80% or so were able to achieve around 85%. If his class scores had been pass-fail, he 

would have had to use a non-parametric statistic—a chi-square test—and would have 

found no result, since the number of failing grades relative to passing grades would not 

have been any different. 

Continuous measures can be sliced into any number of ordered categories for other 

types of analysis. If you collect study participants’ adjusted gross incomes, a continuous 

measure, you can later determine their tax brackets, an ordinal measure. But if you 

collect only tax bracket, you cannot later turn this information into the finer, continuous 

measure of income. 

Handling Data and Analysis 

Managing data 

Quantitative data is typically represented using spreadsheets, with one variable or 

measure per column and one subject per row.  Most statistical analysis software 

programs use this format.  It is a good idea to familiarize yourself with the statistical 

software and the specific analyses you will be using before you begin entering data into 

a computer.  Some analyses are much easier to perform when the data are organized a 
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certain way.  For instance, if Dr. Marcus’ lecture style experiment described above uses 

a within-subjects design and so requires a paired t-test, he should have one student per 

line, each with two columns: (1) a measure of amount of learning on didactic lecture 

topics and (2) a measure of the amount of learning on student participation lecture 

topics.  Any statistical package, when asked to perform a paired t-test, will ask which 

two variables are to be compared.   

Many novice researchers are familiar with spreadsheet programs, such as Microsoft 

Excel©.  Spreadsheet programs are useful for entering and organizing data into different 

row-column configurations.  Excel© in particular is a powerful program with many subtle, 

scriptable features, many of which allow statistical analysis.  However, it is always worth 

the monetary and time investment to buy and learn a dedicated statistical software 

package such as SPSS©, SYSTAT©, or JMP©.  Talk to colleagues at your institution to 

find out what they use and what site licenses your institution offers to faculty and staff.  

Adopting the same software as colleagues with whom you may be collaborating and 

sharing data will save a lot of time and headache in converting file formats and coding 

conventions.  If you lead a lab or department, talk to your students and staff to find what 

programs they tend to prefer.  The people who do the work should choose the software. 

Particularly computer-savvy users may opt to use a more generic mathematical 

software platform, such as SAS©, S-PLUS©, MATLAB©, or R (R having the advantage 

of being free and open-source).  These programs offer a great deal of flexibility and 

allow the researcher to perform various exotic, customized, or subtle analyses 

unavailable on dedicated statistical software packages.  These packages are not for the 

mathematically faint of heart, however, and require a lot more time and learning. 

Below are some basic tips on managing data sets to make analysis easier: 

Use subject codes and anonymous subject notes.  In education research, one of 

the IRB’s primary concern is with the anonymity of student data.  Typically, an 

experiment or even an exploratory study does not require the researcher to know which 

students contributed which data points.  It is usually enough to know that a student’s 

basic demographic information (gender, age, year in program) and the values of that 

student on the independent and dependent measures relevant to the study.  Once this 
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data is collected, throw away the student’s identifying information (name, student ID 

number, social security number) and assign the student some meaningless code name 

or number.  This practice will ensure that data will never be used against the students, 

which will make it easier to get permission from the IRB and remove the primary reason 

for data security. 

That said, keep some notes on some aspects of data collection that might be needed 

later.  For instance, if a student in one class is unusually prone to asking questions 

during class, Dr. Marcus might make a note that “SUB0020” (that student’s meaningless 

code) is very talkative.  So when he or another researcher finds that student’s learning is 

unusually unaffected by the lecture style manipulation, an alternative explanation (that 

the student always participates) is available.  Such notes are best kept in the statistical 

software, in a string variable called “notes” or “comments” so that anyone analyzing the 

data can see them easily. 

Code missing data as missing.  When a student doesn’t answer a question or 

misses an assignment, use a coded value to represent that the data is missing.  

Software packages tend to use a period (“.”) to represent missing data.  Some older 

conventions use impossible numbers (“999” or “-1” on scales that range from 1 to 10) to 

code for missing data, which requires explicitly telling the software to treat those values 

as missing.  A novice researcher may be tempted to use zero, which can lead to 

misleading statistics. 

Keep track of which subjects you exclude and why.  It is incredibly common for 

subjects in social science to misconstrue instructions, behave erratically, or quit during 

the procedure.  Students may transfer, become ill, come consistently late, miss exams, 

or other problems.  If the researcher has good reason to believe that these problems 

have rendered the data collected from that subject unrepresentative of the phenomenon 

being studied, he may elect to exclude that subject from the analysis.  This decision is 

best made before any analysis is conducted, since the temptation will always exist to rid 

the data set of “troublesome” data points which seem to be preventing effects from 

being significant.  The easiest way to avoid that temptation is to vet each subject for 

appropriateness before analysis. 
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If you do exclude subjects, keep their data in the data file and keep notes on why they 

were excluded.  Most statistical software allows the user to exclude subjects from 

analysis without deleting them.  The researcher is responsible for reporting the number 

of excluded subjects and the reasons for the exclusion.  Readers of the research will 

want to know how generalizable your results are. 

Think about data security.  Using anonymous subject codes makes your data files 

less sensitive, since no information from the file could be used to harm the study 

participants. If, for some reason, student identity is important to retain, the data set 

should be guarded carefully.  Even if subjects are anonymous, you may not want the 

data to be too widely available for a variety of personal or professional reasons.  Using 

password file encryption, keeping data files on secured computers, not available through 

networks, and storing disks in locked cabinets should become part of routine 

maintenance of a research lab. 

Data corruption is more likely than theft.  Especially in the case where several 

analysts are accessing the data, a researcher should always keep a single, primary 

copy that can be used to resolve conflicts if unauthorized changes are saved, or if other 

data corruption occurs.  It is always a good idea to burn the full data set to a writable CD 

or DVD for safekeeping.  If the data set is not too large, printing a hard copy of the data 

to paper should be considered.  Analysis should be performed on copies of the original 

to avoid accidental corruption.  If data becomes untrustworthy, results become suspect 

and the entire purpose of the study is nullified.  Data is the sine qua non of science: treat 

it with care. 

Choosing the appropriate statistics 

The appropriate statistics for planned comparisons in planned studies are determined 

almost entirely by the type and number of dependent and independent variables. This 

section is a brief outline of some of the basic statistics appropriate for certain types of 

measures and designs. Depending on the specific nature of the data, the 

recommendations here may not be the best choices, but for the vast majority of 

research, these recommendations will be adequate. 
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The mathematical specifics of these tests is beyond the scope of this paper, though 

the researcher who uses them bears the responsibility of familiarizing him or herself with 

that math to facilitate appropriate interpretations of the results. 

No matter the statistical tests used, it is always a good idea to graph the data: 

Cardinal rule #8: Graph your data. 

 Inferential statistics can be entirely blind to relationships and trends that are perfectly 

obvious to the eye. One of the most common difficulties of using inferential statistics is 

their vulnerability to outliers. Outliers are data points which have values on one or more 

measures which are very different to most of the other data points in a sample. For 

instance, if two groups of students perform identically except for one student in the 

control group who missed the final and scored a zero, it is possible that a t-test would 

find a difference between the groups. Looking at the statistics alone, a researcher might 

conclude that the intervention successfully raised scores. But once the data are plotted, 

that researcher is likely to notice the outlying zero and take the peculiarities of that case 

into account, perhaps by excluding that subject and re-running the analysis.  As noted 

above, this zero should have been treated as missing data and that subject perhaps 

excluded from the start. 

Histograms are the best graphs for examining measures.  Histograms are bar charts 

showing the distribution of a continuous variable: the number of subjects within each of 

a set of ranges of values of that variable.  Educators often use histograms of student 

scores to “curve” a test.  Dependent measures should yield a fairly normal distribution 

on a histogram.  Parametric statistics assume that the continuous measures in question 

have normal distributions, so distributions that look extremely skewed or kurtotic might 

require some explanation or special treatment.  It is a good idea to generate a histogram 

and some simple descriptive statistics (mean, median, standard deviation, skewness) for 

each continuous measure in the data set to make sure the values make intuitive sense 

and there are few, if any, outliers. 
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The next most important graphs are bar graphs and scatterplots, which can show the 

relationship between a continuous dependent measure and one independent, either 

categorical or continuous, respectively.  On both types of graphs, the dependent 

measure is plotted on the vertical axis and the independent on the horizontal.  In a bar 

graph, each condition of the independent measure is represented by a vertical bar, the 

height of which represents the mean of the values in that condition.  In a scatterplot, 

each subject’s value on the continuous independent measure determines the horizontal 

position of a data point and his or her value on the dependent measure determines its 

height.  These graphs quickly and easily show the relationship between two measures.  

Most software programs generate them easily.  It is worthwhile to generate at least one 

such graph for every statistical test you perform.  Sometimes the specific bar heights, or 

the placement of individual data points on the scatterplot can be more informative than 

the statistic that attempts to summarize those patterns. 

Once you have confirmed that your data set is correct, secure, and free of errant data 

caused by uncooperative subjects or uncontrollable circumstance, generate your 

summary statistics and basic plots.  Once you have confirmed that your dependent 

measures are fairly normally-distributed and appear related in sensible ways to the 

independent measures in the data set, you may conduct your inferential statistics to test 

your hypotheses.  Choosing the correct inferential statistic is tricky: there are myriad 

statistics, each with a slightly different meaning and purpose.  Consultation with a 

statistician is always a good idea.  However, we have provided a quick overview of the 

most basic, commonly-used statistics.  As mentioned above, complex analyses help 

correct weak study designs.  If practical or ethical circumstances constrain study design 

a great deal, those complex analyses may be necessary.  But ultimately, a causal model 

is not well understood if its predictions cannot be tested using these basic statistical 

tests. 

What are statistics for? 

Statistics allow us to make general statements about data containing variance.  As 

mentioned above, the statement “men are taller than women” is true in general, though 

not always specifically true.  Given a large enough sample of men and women, drawn 
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fairly and randomly from a representative population of people, the truth of the statement 

will become clear.  The statistical test of the statement on the sample will take into 

account the mean height of the men, the mean height of the women, the individual 

variation in height shown in the sample, and the number of people in the sample and 

generate two relevant pieces of information: the effect size (how much taller is one 

gender than the other relative to the typical individual variation in height) and the 

statistical significance of this observation (how confident should we be that this effect 

size is not an erroneous measurement of what is really an effect size of zero).  The 

former is represented by the test statistic itself (t in t-tests, F in ANOVAs, r in regression, 

chi-square in chi-square tests, etc.), the latter is represented by a p-value. 

Cardinal rule #9: Do not obsess about p-values.  Concentrate on effect size. 

A word about p-values: Every inferential statistic will generate a p-value.  These p-

values receive a great deal of attention since they determine the statistical significance 

of a result. However, the logic of statistical significance is slippery and commonly 

misunderstood. The lack of statistical significance (a “null result”) may be a sign that 

there is no real-world causal effect between independent and dependent measures..  

But studies with low power may fail to find a statistically significant effect even though 

there actually is a real-world causal relationship (this, by the way, is called a Type II 

error).  On the other hand, statistical significance alone does not merit mention: any 

effect, no matter how small, can be measured with statistical significance.  

For instance: the statement “men named Dave are taller than men named Mark” is 

not true in any real sense.  However, if we managed to find every single man named 

Dave and every single man named Mark, measure their heights and compute the mean 

of each, those means would certainly not be exactly the same.  They may be very close, 

but if measured finely enough, the mean height of one group will be higher than that of 

the other.  At some point during data collection, that small, meaningless difference will 

become statistically significant.  At that point the researcher can be somewhat certain 

that the real-world difference is not exactly zero.  Having achieved that amount of 
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information, however, has no bearing on the relevance, importance, or general truth of 

the hypothesis in question.  It is therefore, a fruitless exercise to keep collecting data 

until an effect becomes significant.  It is much better to compute the power of your 

experiment beforehand and conduct your inferential statistic only after you have 

collected enough data to give you sufficient power. 

The p-value is only a useful indicator of the reliability of an effect if the reader has a 

sense of the quality of variance of the measures in question.  For instance, a report that 

men named Dave are on average .003 inches taller than men named Mark (t(4,999) = 

1.96, p < .05) is likely uninteresting since it took the measurement 5,000 individuals 

(indicated by the 4,999 degrees of freedom of the t-statistic) to achieve a barely 

significant effect of a tiny (3 thousandths of an inch) difference in height.  A reader who 

doesn’t know that people tend to be around 70 inches tall won’t know that .003 inches is 

a tiny difference.  A reader who doesn’t know that people are easy to find and vary in 

height a great deal won’t know that 5,000 individuals is an unusually large sample size.  

As described below in the section on writing results sections for publication, it is always 

a good idea to report group means and standard deviations to help the reader 

understand the importance of a statistical effect. 

A relatively new value for one-tailed statistics, p-rep is gaining popularity in the 

psychology literature. It is a non-linear transformation of the p-value and explicitly 

represents the expected likelihood that a result in the same direction would occur if the 

study were conducted again. For instance, if a researcher found that women enjoyed a 

given learning activity more than men (t=2.18, p<.05), she might report a p-rep of .85, 

indicating that if the study were rerun, there would be a 85% chance that women would 

enjoy the activity more than men. The intuitive interpretation of this statistic makes it less 

confusing than the raw p-value.  However, this statistic is very new and very rare. 

Parametric statistics 

When a planned study uses one continuous dependent measure, parametric statistics 

may be used. These are the most powerful statistics, which is why, as mentioned above, 

continuous dependent measures are superior to categorical or ordinal ones.  When Dr. 
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Marcus tests the impact of a guest lecture series on student motivation, he may choose 

to measure student motivation using a questionnaire that generates a score from 0 to 

100 for each student. He routinely gives this survey, so he already has data from 

previous years. The survey score is a continuous dependent measure, so parametric 

statistics are possible. The specific analyses available are determined by the type and 

number of independent variables: 

Independent samples t-test. Dr. Marcus has one independent measure (presence of 

that guest lecture series) that has exactly two condition (yes and no).  He may compare 

student motivation scores from his most recent class, which incorporated the guest 

lecture series, to a previous class which did not.  Since the two conditions contain 

different students, he is using a between-subjects design, so his test is an independent 

samples (not a paired) t-test. 

Independent samples oneway ANOVA. Dr. Marcus has two years, each with a 

different guest lecturer.  Because he has more than two conditions of the independent 

measure, he can run an Analysis of Variance (ANOVA). Since there is only one 

independent measure, the analysis is called an independent samples oneway ANOVA 

(or simply, oneway ANOVA).  The oneway ANOVA is similar to running an independent 

samples t-test between every pair of conditions, but corrects for the possibility of finding 

results by accident due to multiple tests using the same data set.  He may find that 

motivation was higher when there was a guest lecturer than when there wasn’t.  He may 

find that only one of the guest lecturers yielded higher motivations.  A bar graph of 

motivation scores by condition will help Dr. Marcus summarize the results of this test. 

Paired t-test. If Dr. Marcus measures student motivation about topics covered by the 

guest lecture series and topics not covered, he can conduct a paired t-test to compare 

each student’s motivation between these conditions.  As described above, this test is 

more powerful than the independent samples t-test since it uses a within-subjects 

design.  

Repeated measures oneway ANOVA. If Dr. Marcus measures student motivation 

about six topics, each covered by the guest lecturer, to a different extent, he may 

perform a repeated measures oneway ANOVA.  This test is more powerful than the 
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independent samples oneway ANOVA mentioned above because it uses a within-

subjects design.  It is also analogous to performing paired t-tests between each pair of 

conditions.   

One important note when using repeated measures ANOVA with more than three 

conditions: make sure the assumption of sphericity is not violated before interpreting the 

results.  The math behind this assumption is beyond the scope of this manuscript, so if 

the situation arises, we advise a statistical consultation.  Most statistical packages will 

compute Mauchley’s W, which tests for the violation of sphericity, automatically.  If W is 

significantly high, consult a statistician about the appropriate correction to apply to the 

test. 

ANOVA. Dr. Marcus hypothesizes an interaction: that males are more motivated by 

guest lectures than females.  To test it, he has measured two classes (one with a guest 

lecturer and one without) and recorded student gender and motivation level.  He must 

run an ANOVA.  ANOVA is the appropriate analysis if the design is balanced—that is, 

each unique combination of values of the independent measures contains the same 

number of observations. Since neither of his independent measures is within-subjects, 

his ANOVA will contain only independent samples tests.  The use of two independent 

measures makes it a two-way ANOVA and it will test for three effects: the main effect of 

gender, the main effect of guest lecturer, and the interaction of the two. 

Often, a design will have both within- and between-subjects independent measures—

this requires a mixed-model ANOVA. For example, a comparison of the effectiveness of 

a learning intervention on men to women may have a repeated measure (pre- and post-

intervention) and an independent sample (gender).  In order to test for the interaction of 

these two measures, the mathematical assumptions behind the analysis of within- and 

between-subjects models have to be reconciled. 

More complicated ANOVAs are also possible, but it is important to remember that  

each additional independent measure can interact with each of the previous main effects 

and interactions.  A three-way ANOVA tests for 7 effects (3 main effects, 3 two-way 

interactions, 1 three-way interaction), a four-way ANOVA tests for 15 effects (4 main 

effects, 6 two-way interactions, 4 three-way interactions, 1 four-way interaction), and so 
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on.  Extraneous tests reduce the power of the study and—as noted above—complicated 

interactions seldom help explain phenomena. 

Linear regression.  Dr. Marcus thinks that a guest lecturer only improves motivation to 

the extent that he uses concrete examples.  So for each guest lecturer, he records the 

number of concrete examples used and he measures student motivation for each guest 

lecturer’s topic.  He finds that lecturers use between zero and eight examples, with most 

using about three.  He can conduct a linear regression analysis to see if more examples 

yield higher motivation.  Linear regression does more than compare the mean 

motivation of zero-example topics to the mean motivation of one-, two-, and three-

example topics, etc.  It tests for the existence of a trend where each example adds some 

constant amount of motivation.  A scatterplot best represents the results of a linear 

regression and may identify reasons why the regression finds or does not find a result.  

Regression is very powerful and rests firmly on the assumption that the continuous 

measures being used have normal distributions.  Histograms and scatterplots will help 

the researcher understand what the results of a regression analysis mean. 

Multiple regression.  Dr. Marcus also thinks that the lecturer’s age might influence 

motivation, perhaps interacting with concrete examples—perhaps older lecturer’s 

examples impact motivation more than those of younger lecturers.  If he has recorded 

the lecturers’ ages as well as the number of concrete examples they used, he can 

conduct a multiple regression analysis, testing for the linear effects of age and number 

of examples and also their interaction.  When a researcher has a specific hypothesis 

such as Dr. Marcus does in this case, he may conduct the multiple regression analysis 

to specifically test for the hypothesized interaction.  However, conducting a multiple 

regression analysis with several independent variables with no a priori hypotheses will 

surely lead to bad results.  Multiple regression is too powerful for this purpose and will 

almost always find significant results, even in perfectly random data.  It is a technique 

best used conservatively. 

Non-parametric statistics 

Non-parametric statistics are needed when the dependent measure is not continuous.  

Sometimes it is a good idea to treat a continuous dependent measure as if it were 
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categorical and run non-parametric statistics.  For instance, each student receives a 

percentage score on a test (a continuous measure), but these are ultimately converted 

into letter grades (an ordinal measure); an administrator interested in the impact of a 

new textbook on students’ scores may not be interested in the change in percentage 

scores if it doesn’t change the number of A’s, B’s, and C’s.  However, non-parametric 

statistics have less power and so are less likely to detect smaller effects. There are 

many non-parametric statistics available.  Two of the most common, chi-square and 

Spearman’s correlation, are described below. 

Chi-square.  Dr. Marcus is interested in students’ attendance of guest lectures vs. his 

own lectures by male and female students.  His dependent measure is inherently 

categorical: each student either attends a lecture or does not.  He could compute the 

percentage of lectures of each type each student attends and treat that percentage as a 

continuous measure.  He could also test for an effect non-parametrically using a 2 by 2 

matrix of 4 numbers: the numbers of males and females who attended all the guest and 

his own lectures.  The statistic to test for the difference is chi-square. 

Chi-square requires more than four or five students in each cell of that matrix.  If, for 

instance, only 2 males attended all the guest lectures, the chi-square statistic will be too 

unreliable.  Chi-square is computed by comparing the observed numbers to a 

hypothetical set of numbers we’d expect if there were no effects.  This is important to 

remember because Dr. Marcus isn’t interested in whether there are more males than 

females in his class.  Unless he tells his software to ignore that main effect, his chi-

square statistic will test for that. 

Spearman correlation.  Dr. Schneider may be interested in the impact of a new 

admissions ranking process for applicants.  She wants to compare the new system of 

ranking applicants to the one used in previous years by applying both methods to the 

current crop of applicants.  She knows that rank is more like an ordinal measure than a 

continuous measure.  Moreover it’s not a parametric measure: it doesn’t have a normal 

distribution.  She wants to run a correlation to estimate the similarity of the two rankings, 

but knows that a Pearson’s correlation is parametric, and therefore inappropriate.  She 

needs to run a Spearman’s correlation, which compares two sets of ranks. 
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Sharing your results with the world 

Since theories contain many causal models and each causal model can generate many 

hypotheses and each hypothesis must be tested by multiple studies, science is 

inherently a collaborative project. No single theorist can make a significant contribution 

to her field without an army of similarly-minded researchers attempting to falsify and 

support various aspects of her theory. Every seminal theory or experiment in every 

scientific literature has become seminal only through repetitive testing and replication by 

a community of scientists. Sharing the results of a study is one of the most important 

aspects of research. The research publication—an internal report or a peer-reviewed 

journal article—is the ultimate and permanent form of a research study. 

The goal of any research publication is twofold: 1) to allow any scientist to replicate 

the study exactly as it was first conducted and 2) to give that scientist an idea of what 

results to expect. Without these aspects, a research publication has little value to other 

scientists. Research publications in most fields, including education, tend to adhere to 

this basic form: introduction, methods, results, conclusions. The introduction briefly 

describes the theories, causal models, and hypotheses in question and summarizes 

other studies findings on the same topic. The conclusions briefly describe the 

researcher’s interpretation of the results and her sense of the implications for the 

theories in question. Both of these sections chiefly contain subjective interpretations of 

widely-available resources and contain arguments which anyone can challenge or 

defend. Only the methods and results sections contain information known only to the 

researcher. It is the researcher’s responsibility to accurately and completely describe her 

methods and results and only the researcher can vouch for that accuracy. 

It is not uncommon to hear the lay press criticize the editorial and peer-review 

process of a journal when a result published in that journal later proves to be founded on 

falsified data or statistics.  Such criticisms are entirely misplaced.  The editorial process 

can only constrain the validity of the claims researchers can draw from results.  Only the 

researcher can speak to the validity of the results.  There is no glory to be gained from 
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publishing results based on falsified data or statistics.  Replication will not support 

fictional results and empiricism will defeat lies.  It is probably the most important cardinal 

rule: 

Cardinal rule #10: Report results honestly and share datasets freely. 

Researchers tend to permanently archive the datasets behind the results they 

published.  Colleagues will ask to see the raw datasets in order to confirm surprising 

analysis results, try different analyses to test other hypotheses, or combine multiple data 

sets into one large one for exploratory secondary analyses or meta-analyses.  Such 

analyses are important and such requests are common. Increasingly, it is becoming 

common for researchers to put data sets on Internet servers for public access and to 

give the Internet address in the manuscript.  Be prepared to share your data. If data is 

collected by students or lab staff who answer to you, maintain the contact information for 

those individuals in case readers or editors question the veracity of the data.  Do not put 

your name on publications reporting results based on data you do not trust entirely, or 

would not feel comfortable sharing with colleagues. 

Before writing a manuscript, choose the journal you want to submit it to.  Every 

journal has a different protocol for manuscript submission.  Some have Web-based 

submission software, some allow submissions by email, some require paper documents 

be mailed to the editor.  Each journal has a different page limit, word limit, manuscript 

format, section and sub-section outline, title-page requirements.  Some require the 

authors to put their names on the title page and some forbid it.  Read and adhere to the 

journal’s submission guidelines when preparing your manuscript.  A lack of adherence to 

the journal’s published requirements is a sure-fire way to have your manuscript rejected. 

Choose the journal carefully.  It is scientifically unethical to have a manuscript under 

review at more than one journal at any given time.  It is scientifically bad form to have 

multiple manuscripts based on the same analysis, or even the same data submitted to 

multiple journals simultaneously.  Journal review processes take several months and 

revising the manuscript for a different journal can take just as long.  So choosing a 
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journal that is unlikely to publish your work could unnecessarily delay its publication for a 

year or more.  It is often a good idea to ask a journal editor to quickly scan a manuscript 

draft, or even just a brief description of the research methods and findings, to get 

feedback on its appropriateness for that journal.  Such simple communication can save 

years of wasted time and resources and can help strengthen your relationships with the 

journal editors in your field, making subsequent publication processes smoother and 

easier. 

Reporting Methods 

A methods section is a recipe for replicating the study. It must describe the materials in 

enough detail that another researcher could find or create the same. It must describe the 

independent measures: what concepts were they measuring, how were manipulations 

achieved, what manipulation checks were used. It must describe the procedure for data 

collection: what were the dependent measures, how were they collected and quantified.  

It must describe the statistical analyses and the software used to conduct them. 

In any study, it should be possible to write the entire methods section before the 

study is completed. This document serves as a research protocol and is good academic 

practice. Some journal editors are glad to look at research protocols to assess the 

suitability of the research for publication in that journal; acquiring those assessments 

and consequent feedback can be invaluable for avoiding wasting resources on 

unpublishable research. The research protocol also allows a team of research assistants 

who may be collecting data for the same project to standardize their methods and avoid 

subtle biases due to methodological differences. 

A publication must describe the human subjects who participated—how they were 

recruited, how they were compensated, how many excused themselves or were 

excluded and why. In all social sciences, this information is crucial because it indicates 

the generalizability of the results. Generalizability is the breadth of the implications of a 

result. A result obtained from volunteer graduate-level students may or may not be 

replicable in a random sample of undergraduate students. A result found in an 

engineering education program may or may not be replicable in a business school. If a 
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result appears in many different types of samples, it is highly generalizable, and has 

deep implications for a theory. When a finding has low generalizability, the composition 

of the sample which exhibits the result can inform further research, such as the 

complicated interaction between number of assigned readings, gender, specialty and 

year in program described above: the more specifics given in the presentation of the 

sample, the more likely an astute reader will generate a more parsimonious alternative 

hypothesis.  

Reporting Results 

Report the effects you planned to test for and little else.  Publishing unexpected 

results merely because they are statistically significant is counter-productive to science.   

This occurs more frequently in the literature than one might expect, primarily because 

statistical significance is typically necessary for acceptance for publication in a peer-

reviewed journal. Countless experiments produce no significant results and are never 

published.  This is called the “file drawer effect” and causes the literature to overstate 

the validity of many causal models. Since any result can be found to be statistically 

significant given a large enough sample (as explained above, in the section on statistical 

power), researchers are tempted to keep collecting data until their p-values are low 

enough to publish. Even worse, statistical significance will happen by chance alone if 

one runs enough inferential statistics on a dataset, so researchers are tempted to run 

many tests and not report the non-significant results. To the extent that these decisions 

are made after examining the data, they are post hoc, rendering those results 

exploratory. If you find a result you think is interesting and potentially valid, report it, but 

explicitly state it is a post hoc result and therefore exploratory. 

Ideally, each reported result should include 1) the inferential statistic 2) the effect size 

(if the independent measure is categorical), and 3) means and standard deviations of 

groups (if the independent measure is ordinal or categorical) or slopes of trends (if the 

independent measure is continuous or ordinal). The inferential statistic informs the 

reader of the likelihood that the result differs from null due to chance alone, implying the 

likelihood that it is replicable. The effect size informs the reader of the strength of the 
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causal link between the independent and dependent measures relative to other causes 

and measurement error and therefore of its practical and theoretical importance. The 

third gives the reader meaningful values of the dependent measure, allowing a complete 

understanding of the effect.  

State the each result in a single sentence and immediately follow each parenthetically 

by its supporting statistic, its degrees of freedom if appropriate, whether its p-value is 

below or above the appropriate level of significance, and its effect size (e.g., d).  Effect 

size can be calculated from knowing the value and degrees of freedom of several 

statistics, so some journals might not want to publish the redundancy.  However, it is 

good form to provide effect size wherever permitted to help future readers plan their own 

related studies.  Parenthetically report means and standard deviations of each group in 

the sentence wherever possible. 

Tables and figures are very useful for presenting the means and standard deviations 

of many groups and are crucial for presenting complex interactions.  Journals tend to 

limit the number of figures and tables a manuscript may contain, so they are best used 

carefully.  However, remember that a figure is an accessible visual representation of a 

great deal of information that may be difficult to explain in the text.  A good figure will be 

useful for presenting your results to colleagues and for your colleagues to summarize 

your results in their own presentations.  It is a good idea to make a figure representing 

the most important finding in your study, even if the result is easily explained in the text.  

The figure will highlight the result and more readers will remember it. 

Publication 

Ultimately, a research publication is only one puzzle piece that a careful reader must 

reconcile with the rest of the literature. The measures and methods used, the results 

expected, and the results found (planned and exploratory) define the contribution of the 

study to the larger theoretical picture. Only from these can we infer the actual causal 

structure of the constructs in the world and the most parsimonious theories for 

describing that structure.  A manuscript with carefully written methods and results 
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sections will provide great value to the scientific community.  Clarity and honesty of 

presentation are paramount. 

Most journals will send a submitted manuscript to two or three of your colleagues, 

who will read it and rate the quality of the research presented and the theoretical 

conclusions made by the authors.  Most journals will withhold the manuscript’s authors’ 

names from the reviewers to avoid biasing their ratings.  The editor will usually share 

these comments with the authors.  Commonly, the editor will request the authors amend 

their conclusions, add some introductory statements, run additional analyses, or even 

collect additional data and then resubmit the manuscript.  As mentioned above, 

scientists are skeptical and the peer review process exists to hone the validity of 

theoretical statements in the literature.  Reviewer comments, no matter their harshness 

or seeming irrelevance, are valuable information about how the community will react to 

the manuscript.  If the editor gives a “revise and resubmit” judgment, it is best to quickly 

address all the reviewers’ comments and resubmit. 

The published article is the final form of your study.  Make sure it is concise, accurate, 

and clear.  The world is a messy place and transparent, methodical empiricism will help 

make sense of it.  Published articles that make vague claims, summarize small or 

careless data sets, or present ambiguous results will merely be glossed over by an 

already overwhelmed community.  Published articles that address important questions 

directly and simply and provide interesting and well-supported results will be 

remembered and cited by other researchers.   

But no work ends with a study’s publication.  Every article raises enough alternative 

explanations and questions to motivate a dozen more studies.  Read articles by your 

colleagues, challenge their assertions with a critical skepticism, and practice developing 

alternative explanations for published results and inventing hypotheses that can resolve 

conflicts between incompatible theories.  Write methods sections that test these 

hypotheses and develop ways to collect, store, and analyze the data that can test those 

hypotheses.  Every result you find will raise many alternative explanations, each of 

which is a challenge to your causal model.  Each alternative explanation suggests 

another hypothesis, another research study that can further test the validity your causal 

46 



47 

model.  Each study is another possible publication and another possible line for your 

research program. 

 
Appendix: The 10 Cardinal Rules 

1) Exploratory studies can suggest, but cannot test theories.  

2) Regard your results with skepticism. Type I error results from excess credulity. 

3) Correlation does not indicate causation  

4) Theories can never be proven true, they can only fail to be proven false. 

5) No single study can prove a hypothesis false.  

6) Randomization ensures unbiased results. 

7) The better the experimental design, the simpler the statistical analysis and the 

stronger the causal assertion. 

8) Graph your data. 

9) Do not obsess about p-values.  Concentrate on effect size. 

10) Report results honestly and share datasets freely. 


